Notes of 2.5 (accelerating convergence)

Monday, February 8, 2021 7:03 PM

Aitken's △2 method

going from linearly convergent to quadratically convergent.

If
$$p_n\to p$$
 linearly,
$$\mathrm{define}\ \hat{p}_n=p_n-\frac{(p_{n+1}-p_n)^2}{p_{n+2}-2p_{n+1}+p_n}$$

proof idea

(all computation) assume
$$\frac{p_{n+1}-p}{p_n-p} \approx \frac{p_{n+2}-p}{p_{n+1}-p}$$
 cross multiply expand solve for p complete the square

Definition (Forward Difference)

Given p_n .

1. define
$$\Delta p_n = p_{n+1} - p_n$$

2. define $\Delta^k p_n = \Delta^{k-1}(\Delta p_n)$ for $k \ge 2$

(by this definition, $\Delta^2 p_n=(p_{n+2}-p_{n+1})-(p_{n+1}-p_n)$) Aitken can be written neatly as:

$$\hat{p}_n = p_n - \frac{(\Delta p_n)^2}{\Delta^2 p_n}$$

Theorem (rapid convergence of Aitken's method)

If $p_n \to p$ linearly, and $\lim_{n\to\infty} \frac{p_{n+1}-p}{p_n-p} < 1$, and $\widehat{p_n}$ is a sequence from the Aitken's method, then $\lim_{n\to\infty} \frac{\widehat{p_n}-p}{p_n-p} = 0$

Steffensen's Method

An algorithm to find fixed points.

idea: with a guess, do standard iterations to get 3 points. use Aitken's Δ^2 method to get a point using 3 previous points repeat

Theorem 2.15 (Convergence of Steffensens Method)

Under certain assumptions, Steffensens method converges quadratically.